Mathematical Modeling and Experimental Identification of a Model Helicopter

نویسندگان

  • S. K. Kirn
  • D. M. Tilbury
چکیده

This paper presents a new mathematical model for a model-scale helicopter. Working from first principles and basic aerodynamics, the equations of motion for full six degree-of-freedom motion are derived. The control inputs considered are the four pilot commands from the radio transmitter: roll, pitch, yaw, and thrust. The model helicopter has a fast time-domain response due to its small size, and is inherently unstable. A flybar is used to augment the stability of a model helicopter to make it easier for a pilot to fly. The main contribution of this paper is to model the interaction between the flybar and the main rotor blade; it is shown how the flapping of the flybar increases the stability of the model helicopter as well as assists in its actuation. After the mathematical model is derived, some preliminary system identification experiments and results are presented. The paper ends with conclusions and a short description of future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling and Experimental Identification of Micro Coaxial Helicopter Dynamics

This paper deals with the problem of development of the mathematical model of a micro coaxial helicopter using hybrid method of analytical and experimental approach. An analytical mathematical model of micro coaxial helicopter has been derived with the consideration of dynamics of rotating parts to the rigid body dynamics. Pre-flight simulation was carried out based on the derived mathematical ...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics

This paper presents a mathematical model for a model-scale unmanned helicopter robot, with emphasis on the dynamics of the flybar. The interaction between the flybar and the main rotor blade is explained in detail; it is shown how the flapping of the flybar increases the stability of the helicopter robot as well as assists in its actuation. The model helicopter has a fast time-domain response d...

متن کامل

Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach

There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...

متن کامل

System Identification Modeling of a Model-Scale Helicopter

Abstract: Development of a reliable high-performance helicopter-based unmanned aerial vehicle (UAV) requires an accurate and practical model of the vehicle dynamics. This report describes the process and results of the dynamic modeling of a model-scale unmanned helicopter (Yamaha R-50 with 10 ft rotor diameter) using system identification. A complete dynamic model was derived for both hover and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001